32 research outputs found

    Neurophysiology of vestibular rehabilitation

    Get PDF
    The vestibular system is a sophisticated human control system. Accurate processing of sensory input about rapid head and postural motion is critical. Not surprisingly, the body uses multiple, partially redundant sensory inputs and motor outputs, combined with a very competent central repair capability. The system as a whole can adapt to substantial peripheral vestibular dysfunction. The Achilles' heel of the vestibular system is a relative inability to repair central vestibular dysfunction

    A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV

    Get PDF
    Benign Paroxysmal Positional Vertigo (BPPV) is a mechanical disorder of the vestibular system in which calcite particles called otoconia interfere with the mechanical functioning of the fluid-filled semicircular canals normally used to sense rotation. Using hydrodynamic models, we examine the two mechanisms proposed by the medical community for BPPV: cupulolithiasis, in which otoconia attach directly to the cupula (a sensory membrane), and canalithiasis, in which otoconia settle through the canals and exert a fluid pressure across the cupula. We utilize known hydrodynamic calculations and make reasonable geometric and physical approximations to derive an expression for the transcupular pressure ΔPc\Delta P_c exerted by a settling solid particle in canalithiasis. By tracking settling otoconia in a two-dimensional model geometry, the cupular volume displacement and associated eye response (nystagmus) can be calculated quantitatively. Several important features emerge: 1) A pressure amplification occurs as otoconia enter a narrowing duct; 2) An average-sized otoconium requires approximately five seconds to settle through the wide ampulla, where ΔPc\Delta P_c is not amplified, which suggests a mechanism for the observed latency of BPPV; and 3) An average-sized otoconium beginning below the center of the cupula can cause a volumetric cupular displacement on the order of 30 pL, with nystagmus of order 2∘2^\circ/s, which is approximately the threshold for sensation. Larger cupular volume displacement and nystagmus could result from larger and/or multiple otoconia.Comment: 15 pages, 5 Figures updated, to be published in J. Biomechanic

    Robust estimates of soil moisture and latent heat flux coupling strength obtained from triple collocation

    Get PDF
    Land surface models (LSMs) are often applied to predict the one-way coupling strength between surface soil moisture (SM) and latent heat (LH) flux. However, the ability of LSMs to accurately represent such coupling has not been adequately established. Likewise, the estimation of SM/LH coupling strength using ground-based observational data is potentially compromised by the impact of independent SM and LH measurements errors. Here we apply a new statistical technique to acquire estimates of one-way SM/LH coupling strength which are nonbiased in the presence of random error using a triple collocation approach based on leveraging the simultaneous availability of independent SM and LH estimates acquired from (1) LSMs, (2) satellite remote sensing, and (3) ground-based observations. Results suggest that LSMs do not generally overestimate the strength of one-way surface SM/LH coupling

    ECOSTRESS: NASA's next generation mission to measure evapotranspiration from the International Space Station

    Get PDF
    The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station ECOSTRESS) was launched to the International Space Station on June 29, 2018. The primary science focus of ECOSTRESS is centered on evapotranspiration (ET), which is produced as level‐3 (L3) latent heat flux (LE) data products. These data are generated from the level‐2 land surface temperature and emissivity product (L2_LSTE), in conjunction with ancillary surface and atmospheric data. Here, we provide the first validation (Stage 1, preliminary) of the global ECOSTRESS clear‐sky ET product (L3_ET_PT‐JPL, version 6.0) against LE measurements at 82 eddy covariance sites around the world. Overall, the ECOSTRESS ET product performs well against the site measurements (clear‐sky instantaneous/time of overpass: r2 = 0.88; overall bias = 8%; normalized RMSE = 6%). ET uncertainty was generally consistent across climate zones, biome types, and times of day (ECOSTRESS samples the diurnal cycle), though temperate sites are over‐represented. The 70 m high spatial resolution of ECOSTRESS improved correlations by 85%, and RMSE by 62%, relative to 1 km pixels. This paper serves as a reference for the ECOSTRESS L3 ET accuracy and Stage 1 validation status for subsequent science that follows using these data

    Bilateral Vestibular Weakness

    No full text
    Bilateral vestibular weakness (BVW) is a rare cause of imbalance. Patients with BVW complain of oscillopsia. In approximately half of the patients with BVW, the cause remains undetermined; in the remainder, the most common etiology by far is gentamicin ototoxicity, followed by much rarer entities such as autoimmune inner ear disease, meningitis, bilateral MĂ©niĂšre’s disease, bilateral vestibular neuritis, and bilateral vestibular schwannomas. While a number of bedside tests may raise the suspicion of BVW, the diagnosis should be confirmed by rotatory chair testing. Treatment of BVW is largely supportive. Medications with the unintended effect of vestibular suppression should be avoided

    The Gain-Time Constant Product Quantifies Total Vestibular Output in Bilateral Vestibular Loss

    No full text
    Patients with inner ear damage associated with bilateral vestibular impairment often ask “how much damage do I have.” Although there are presently three clinical methods of measuring semicircular canal vestibular function; electronystagmography (ENG or VENG), rotatory chair and video head-impulse (VHIT) testing; none of these methods provides a method of measuring total vestibular output. Theory suggests that the slow cumulative eye position can be derived from the rotatory chair test by multiplying the high frequency gain by the time constant, or the “GainTc product.” In this retrospective study, we compared the GainTc in three groups, 30 normal subjects, 25 patients with surgically induced unilateral vestibular loss, and 24 patients with absent or nearly absent vestibular responses due to gentamicin exposure. We found that the GainTc product correlated better with remaining vestibular function than either the gain or the time constant alone. The fraction of remaining vestibular function was predicted by the equation R = (GainTc/11.3) – 0.6. We suggest that the GainTc product answers the question “how much damage do I have,” and is a better measure than other clinical tests of vestibular function

    The Gain-Time Constant Product Quantifies Total Vestibular Output in Bilateral Vestibular Loss

    Get PDF
    Patients with inner ear damage associated with bilateral vestibular impairment often ask “how much damage do I have.” Although there are presently three clinical methods of measuring semicircular canal vestibular function; electronystagmography (ENG or VENG), rotatory chair and video head-impulse (VHIT) testing; none of these methods provides a method of measuring total vestibular output. Theory suggests that the slow cumulative eye position can be derived from the rotatory chair test by multiplying the high frequency gain by the time constant, or the “GainTc product.” In this retrospective study, we compared the GainTc in three groups, 30 normal subjects, 25 patients with surgically induced unilateral vestibular loss, and 24 patients with absent or nearly absent vestibular responses due to gentamicin exposure. We found that the GainTc product correlated better with remaining vestibular function than either the gain or the time constant alone. The fraction of remaining vestibular function was predicted by the equation R = (GainTc/11.3) – 0.6. We suggest that the GainTc product answers the question “how much damage do I have,” and is a better measure than other clinical tests of vestibular function

    Bilateral Vestibular Weakness

    No full text
    corecore